Хлопчатник цитоплазматическая мужская стерильность. Цитоплазматическая мужская стерильность и её использование для получения гибридных семян. Что такое цитоплазматическая мужская стерильность

Один из ярких примеров внеядерной наследственности, определяемой дефектностью пыльцы, описан у самоопыляющихся и перекрестноопыляющихся растений. Дефектность пыльцы полностью исключает возможность самоопыоления, так как растения становятся однодомными (женскими).

М.Роадс (1933) обнаружил, что признак мужской стерильности у кукурузы - перекрестноопыляющегося растения - наследуется по материнской линии, через цитоплазму яйцеклетки. Ядерные гены не ответственны за этот признак. Растение с мужской стерильностью при опылении пыльцой от нормального растения образует потомство только со стерильной пыльцой. В серии повторных скрещиваний с использованием в качестве материнских родителей растения с мужской стерильностью, а в качестве мужских - линии растений с нормальной пыльцой, но маркированных по генам, входящим в каждую из 10 пар хромосом кукурузы, Роадс сумел заменить все хромосомы исходной линии с мужской стерильностью на хромосомы нормальной по фертильности линии. При этом многие растения, полученные в результате замены хромосомных наборов, сохраняли признак мужской стерильности. Эти опыты послужили важным доказательством того, что мужская стерильность контролируется цитоплазмой. Хотя описанный признак назван цитоплазматической мужской стерильностью (ЦМС), его проявление зависит также от ядерных генов. Такой вывод был сделан при исследовании небольшого количества растений, полученных в потомстве от указанных скрещиваний, имевших лишь частично сниженную или даже нормальную фертилъность. Возникновение таких растений связано с тем, что наследование признака ЦМС у кукурузы контролируется специфичными ядерными генами-супрессорами, называемыми также генами-восстановителями. Эти доминантные гены в сочетании с цитоплазмой линий растений с ЦМС -обеспечивают восстановление фертильности растений.

Гены-восстановители не приводят к необратимому повреждению или удалению факторов ЦМС из цитоплазамы, а лишь подавляют их действие, поэтому замещение этих генов путем скрещивания на их аллели-невосстановители вновь приводит к стерильности.

Наряду с генами-восстановителями известны ядерные гены-закрепители, обусловливающие полное проявление цитоплазматических факторов стерильности пыльцы.

Явление ЦМС широко применяется при производстве гибридных семян кукурузы, дающих значительно больший урожай, чем негибридные. Использование растений с ЦМС позволяет обойтись без трудоемкого, экономически невыгодного обрывания метелок, предотвращающего возможность самоопыления растений.

Предыдущие материалы:

У многих растений, диких и культурных, встречаются формы, не образующие пыльцы или образующие пыльцу, не способную к оплодотворению. Это явление называется мужской стерильностью. Оно может определяться одним рецессивным геном в хромосоме. Известны формы мужской стерильности, наследуемые по материнскому типу и получившие название цитоплазматической мужской стерильности (ЦМС). Материнское наследование стерильности пыльцы впервые было обнаружено в 1930-х гг. у кукурузы М. Родсом в США и М.И. Ханджиновым в СССР.

При опылении кукурузы с мужской стерильностью пыльцой нормальных растений получалось потомство со стерильной пыльцой. При повторных возвратных скрещиваниях с растениями, имеющими нормальную пыльцу, вновь возникало потомство с мужской стерильностью, даже если все хромосомы материнской линии замещали на хромосомы отцовской, нормальной линии. Таким образом, наследование по материнскому типу и непричастность к этому процессу хромосом позволили локализовать в цитоплазме детерминант, определяющий мужскую стерильность у кукурузы.

Благодаря тому что у кукурузы в основной массе стерильной пыльцы встречаются редкие пыльцевые зерна, способные к нормальному опылению, оказалось возможным реципрокное скрещивание. В первом же гибридном поколении были получены полностью фертильные растения (рис. 8.3).

У кукурузы известно несколько типов цитоплазматической мужской стерильности, например техасский (Г), при котором полностью стерильные пыльники не выступают наружу, и молдавский, ши USDA (5), при котором часть или все пыльники выступают наружу. Эти два типа стерильности различаются также по характеру взаимодействия с генами - восстановителями фертильности. В частности, фертильность у растений с цитоплазмой техасского типа восстанавливают два гена в хромосоме II и ряд генов в хромосомах III, IV, VII и X.

Если обозначить цитоплазматический фактор стерильности как Суг" и нормальную цитоплазму как СуР, а доминантную ядерную аллель - восстановитель фертильности - как /?/(рецессив - rf), то признак цитоплазматической мужской стерильности разовьется только у растений rfrfCyf, в то время как RfRfCy ?, RfrfCyf, RfRfCyf, RfrfCyt 4 , rfrfCyf будут фертильными.

Это явление - восстановление фертильности пыльцы - широко используется на практике для получения гетерозисных двойных межлинейных гибридов кукурузы (рис. 8.4). Для этого рядом высевают по две линии кукурузы со стерильной и фертильной пыльцой. Это обеспечивает только перекрестное опыление, что очень существенно, поскольку кукуруза само- совместима при опылении. Линии по генам Rf подбирают таким образом, что при одном скрещивании гибриды имеют стерильную, а при другом - фертильную пыльцу. При высеве этих гибридов на следующий год таким же образом получают двойные гибриды. При этом в половине случаев опыление дает фертильные по пыльце растения, как и следует при анализирующем скрещивании (рис. 8.4).

Рис. 8.3.

Рис. 8.4.

Этот прием экономически очень выгоден, поскольку позволяет избежать кастрации - обламывания метелок у кукурузы, что требует больших затрат труда. Широкое распространение техасского типа стерильности имело и негативные последствия, поскольку растения с такой цитоплазмой оказались восприимчивыми к грибковым заболеваниям - гельминтоспо- риозу листьев, возбудителем которого является плесневый гриб НеЪгптШропит таусНь, уничтоживший в 1970 г. более половины урожая кукурузы в южных районах США. Токсин, выделяемый этим плесневым грибом, разрушает внутренние мембраны митохондрий у линий кукурузы с техасским типом мужской стерильности. Это заставило искать другие типы ЦМС у кукурузы, чтобы использовать их в селекции вместо техасского типа.

Связь чувствительности к гельминтоспориозу с митохондриями, по- видимому, оказалась неслучайной. Митохондрии, как и хлоропласты, имеют собственную ДНК. В митохондриях Су? отсутствует участок длиной около 10 000 п.н., присутствующий в митохондриях Су? 1 . Этот фрагмент обнаруживает гомологию с ДНК хлоропласта.

Понятие и виды цитоплазматической мужской стерильности

Мужская стерильность - отсутствие образования пыльцы у растений может быть следствием ядерных мутаций или быть связано с цитоплазматическими факторами наследственности. Мужскую стерильность у лука впервые обнаружил американский генетик Д. Джонс в 1924 г. Для получения гибридных семян цитоплазматическая мужская стерильность (ЦМС) является предпочтительной по сравнению с генетической ядерной мужской стерильностью, потому что характеристики ЦМС не подвергаются расщеплению. Например, генетическая ядерная мужская стерильность обычно кодируются одним рецессивным геном, поэтому для экспрессии мужского стерильного фенотипа требуется гомозиготность. Для распространения растений с генетической ядерной мужской стерильностью гомозиготные рецессивные стерильные мужские растения должны быть скрещены с изогенной мужской фертильной линией, гетерозиготной по гену мужской стерильности. Такие скрещивания приводят к образованию определенного процента мужских фертильных растений (50% в системе с одним геном), которые должны быть удалены с поля сразу же, как только может быть идентифицирована их фертильность, чтобы поддержать эффективность желаемой популяции с мужской стерильностью. Удаление с поля мужских фертильных растений представляет собой тяжелый и дорогостоящий труд. Таким образом, расщепление ядерных генов сильно ограничивает пригодность генетической ядерной мужской стерильности для получения гибридных семян.

Цитоплазматическая мужская стерильность экспрессируется во всем потомстве гибридного скрещивания между родителями ЦМС-инбредной линии и линии с мужской фертильностью. По этой причине для получения гибридных семян предпочтителен способ, основанный на использовании ЦМС - характеристик.

Создание гетерозисных гибридов лука с использованием ЦМС растений

Широкое распространение гибридов F 1 в товарном производстве лука репчатого в Японии, Нидерландах и других странах, а также исследования, проведенные в России, показывают большое преимущество гибридов в продуктивности, выравненности гибридов по вызреванию, размеру, форме и качеству луковицы по сравнению с сортами. По данным разных исследователей, повышение продуктивности гибридов составляло 39-52%. Так как получение гибридных семян при искусственном опылении затруднено из-за кастрации цветков и в производственных масштабах невозможно, наиболее целесообразным является создание гибридов на основе мужской стерильности. В селекционной практике наиболее распространенным способом получения таких гибридов является использование в качестве материнских форм линий, обладающих цитоплазматической мужской стерильностью (ЦМС).

В России наиболее успешно проводят исследования в этом плане ВНИИР, ВНИИССОК, в Приднестровском НИИСХ республики Молдова, где созданы стерильные линии сортов Восточный 61, Стригуновскиц, Каба и др. и на их основе созданы перспективные гетерозисные гибриды.

Растения с ЦМС можно найти практически в любом сорте лука, при этом количество их может колебаться от 0,1% до 30%. У семенных растений лука встречаются 2 типа мужской стерильности. У первого тип раскрытый цветок по внешнему виду почти не отличается от цветка с фертильной пыльцой, за исключением того, что столбик у него растет несколько быстрее тычинок. Тычиночные нити короткие, пыльники светло-зеленые, слабо выполненные, усыхают не вскрываясь.

У растений второго типа цветок практически остается в бутоне, а столбик быстро выходит наружу из нераскрытого цветка. Пыльники не имеют жизнеспособной пыльцы, зонтики отличаются по яркости окраски от зонтиков растений с фертильной пыльцой. Обнаружить растения с мужской стерильностью довольно легко, но гораздо труднее сохранить и закрепить признак ЦМС в потомстве этих растений, т.е. создать стерильные линии - исходный материал для создания гибридов F 1 .

Поэтому работа по созданию гетерозисных гибридов F 1 состоит из следующих этапов:

1) выявление растений с ЦМС;

2) закрепление признака ЦМС;

3) получение гетерозисных гибридов.

Установлено, что пыльцевая стерильность лука обусловлена взаимодействием цитоплазматического фактора S с рецессивным геном mS в гомозиготном состоянии msms. В присутствии нормальной цитоплазмы N или доминантного гена MS пыльца развивается нормально, и растение будет фертильно. Растение со стерильной пыльцой может дать потомство только в случае опыления пыльцой фертильного растения. В сортовой селекции лука растения с фертильной пыльцой могут быть представлены такими сочетаниями цитоплазмы и генов, как NMSMS, Nmsms, SMSMS, SMSms, Smsms. При опылении ими растения с генотипом Smsms наследование стерильности будет различным. Закрепляется ЦМС только в том случае, если растение с генотипом Ssmsm опыляется пыльцой с растения с генотипом Nmsms. Потомство от такого растения должно быть на 100% со стерильной пыльцой. При других сочетаниях цитоплазмы фертильность пыльцы в потомстве восстанавливается полностью или частично.

Процесс закрепления мужской стерильности в настоящей разработке довольно сложен и продолжителен. Во ВНИИР разработана единая схема селекционного процесса получения стерильных линий в течение 5 генераций (для двулетней культуры):

1-й год - выявляются стерильные растения с большим количеством цветочных стрелок, каждая из которых опыляется под изолятором фертильным соцветием отдельного отцовского растения-опылителя.

2-й год - высевают по семьям семена с каждой стрелки стерильного растения и с каждой самоопыленной стрелки фертильного растения.

3-й год - высаживают стерильные и фертильные семенники по семьям отдельно. Проверяют материнские растения на стерильность. Оставляют семьи со 100%-ной стерильностью и опыляют растения соответствующими отцами-опылителями. Растения отцов-опылителей самоопыляются.

4-й год высевают семена раздельно по стерильным линиям и отцам-опылителям.

5-й год все семенники высаживаются вместе, семена с отцовских и материнских растений собирают отдельно.

В практической работе линию со 100%-ной стерильностью растений поддерживать трудно из-за модифицирующего действия других генов, которое обуславливает появление некоторого числа фертильных растений, но их количество недолжно превышать 5%.

Для получения гетерозисных гибридов F 1 необходим подбор лучших сортов-опылителей. В качестве отцовских компонентов используют доноры наиболее ценных хозяйственных признаков: устойчивости к болезням, скороспелости, лежкости, округлой формы. Оценку комбинационной способности линий ведут методом топкросса и она возможна на ранних этапах, так как для этого не нужно иметь много маточников. Для ускорения работ по подбору отцов-опылителей их оценивают на комбинационную способность с использованием инцухт-линий. Наиболее эффективен при этом метод поликросса. Выделявшиеся в обоих случаях наиболее ценные линии и сорта по общей комбинационной способности оцениваются в дальнейшем на специфическую комбинационную способность методом диаллельных скрещиваний .

Мужскую стерильность впервые обнаружил К. Корренс в 1904 г. у огородного растения летний чабер. В 1921 г. В. Бэтсон нашел ее у льна, в 1924 г, американский генетик Д. Джонс – у лука, в 1929 г. А.И.Купцов – у подсолнечника.

В 1932 г. М.И. Хаджисимо от него американский генетик М. Родс обнаружили мужские стерильные растения у кукурузы. В дальнейшем было установлено, что мужская стерильность широко распространение среди цветковых растений.

Мужская стерильность генетически может обуславливаться генами стерильности ядра и взаимодействием ядерных генов и плазмогенов. В соответствии с этим различают два вида мужской стерильности: ядерную, или генную, и цитоплазматическую.

Стерильность пыльцы, вызванная цитоплазматическими факторами, носит название цитоплазматической мужской стерильности (ЦМС). Свое название ЦМС получила потому, что этот признак наследуется по материнской линии, через цитоплазму яйцеклетки, и не передается спермиями, т. е. через мужского родителя. ЦМС обуславливается определенными ядерно-цитоплазматическими отношениями и выражается в дегенерации большинства пыльцевых зерен и пыльников на определенных этапах их развития. (Лобашев, 1967)

Для объяснения причин возникновения цитоплазматической стерильности были выдвинуты три гипотезы.

Одна из них, известная под названием вирусной, связывает возникновение мужской стерильности с вирусной инфекцией, которая может передаваться при половом размножении через цитоплазму яйцеклетки.

Вторая гипотеза рассматривает возникновение ЦМС как результат несоответствия цитоплазмы и ядра разных видов при отдаленной гибридизации. Действительно, в ряде случаев, например при скрещивании мягкой пшеницы Triticum aestivum с Triticum Aestivum, возникают формы с ЦМС. Однако у многих культур обнаружена ЦМС, не связанная с отдаленной гибридизацией. Поэтому наибольшее признание в настоящее время получила гипотеза, рассматривающая возникновение ЦМС в результате специфических мутаций плазмогенов.

Можно утверждать, что цитоплазматическая мужская стерильность обусловлена наследственными изменениями (мутациями) цитоплазмы. Она обычно полностью сохраняется в F1 и последующих поколениях у всех растений. При этом типе наследования стерильное растение, например кукуруза, опыленное пыльцой другого сорта или линии, дает потомство, у которого метелка остается стерильной, а остальные признаки изменяются, как обычно при гибридизации. Признак мужской стерильности сохраняется, даже когда все 10 пар хромосом у кукурузы таких стерильных по пыльце растений замещаются в повторных скрещиваниях хромосомами от растений с нормальной, фертильной пыльцой. Из этого следует, что мужская стерильность устойчиво передается из поколения в поколение по материнской линии, а наследственные факторы, ее обусловливающие, не находятся в хромосомах ядра.

Характер наследования ЦМС хорошо изучен в реципрокных скрещиваниях растений с мужской стерильностью, иногда дающих в небольшом количестве фертильную пыльцу, с нормальными фертильными растениями. При опылении растений стерильной линии фертильной пыльцой признак стерильности передается гибридам F1 и последующих поколений. Если такое скрещивание продолжается, то происходит постепенное замещение генов стерильной линии генами линии с фертильной пыльцой. Цитоплазма материнской стерильной линии постепенно насыщается ядерным наследственным материалом отцовской фертильной линии.

С каждым скрещиванием у материнской линии остается все меньше и меньше своих наследственных факторов, они заменяются факторами линии, взятой для насыщающего скрещивания. В результате шести-семи возвратных скрещиваний и отбора получаются растения, по всем признакам сходные с отцовской линией, но обладающие мужской стерильностью. Их называют стерильными аналогами фертильных линий, использовавшихся в качестве отцовской формы.

При опылении растений фертильных линий пыльцой, которая изредка образуется у растений стерильных линий, гибриды F1 имеют фертильную пыльцу и при дальнейшем размножении дают растения только с фертильной пыльцой. Следовательно, ЦМС не может быть передана через мужское растение, но стойко передается из поколения в поколение по материнской линии.

Результаты рассмотренного скрещивания, казалось бы, не оставляют никаких сомнений в том, что признак ЦМС генетически связан только с внехромосомными факторами. Но дальнейшее изучение наследования ЦМС показало, что не во всех скрещиваниях стерильных растений с фертильными получается потомство со стерильной пыльцой. В некоторых случаях признак стерильности полностью подавляется у гибридов F1 и совершенно не проявляется при дальнейшем их размножении или, начиная с F2, происходит расщепление на фертильные и стерильные по пыльце растения.

В результате изучения и обобщения экспериментального материала по наследованию мужской стерильности возникло представление о том, что это свойство обусловлено взаимодействием цитоплазмы и генов хромосом, составляющих вместе генетическую систему.

Цитоплазма, обусловливающая стерильность пыльцы, получила название цитs (стерильная цитоплазма), а цитоплазма, дающая растения с фертильной пыльцой, – цитN (нормальная цитоплазма). Существует локализованный в хромосомах доминантный ген Rf (от начальных букв restoring fertility– восстанавливающий фертильность), который, не изменяя структуры и специфичности стерильной цитоплазмы, в то же время препятствует ее проявлению. Стерильная цитоплазма проявляет свое действие только в сочетании с рецессивными аллеями этого гена. Следовательно, только сочетание цитs rfrf может обусловить развитие стерильной пыльцы. Фертильная пыльца образуется на основе нормальной цитоплазмы в сочетаниях цитN RfRf, цитN Rfrf и цитN rfrf и на основе стерильной цитоплазмы в сочетаниях цитs RfRf и цитs Rfrf. Таким образом, наследование ЦМС по материнской линии возможно только в скрещиваниях растений

цитs rfrf x цитN rfrf

Рис. 11. Схема производства гибридных семян на основе цитоплазматической мужской стерильности

Выше был описан наиболее простой случай наследования стерильности, связанный с взаимодействием стерильной цитоплазмы и одной аллельной пары генов. В настоящее время изучены более сложные генетические системы ЦМС, связанные в проявлении стерильности пыльцы с двумя и тремя генами.

ЦМС широко используется при создании на стерильной основе гетерозисных гибридов кукурузы и некоторых других культур.

ЦМС вызывает у растений кукурузы ряд изменений: уменьшается число листьев (на 3-4%), снижается рост растений (до 4-5%), наблюдается небольшая депрессия и по другим признакам. Степень проявления депрессии зависит от генотипа линий: у одних она выражена сильнее, у других слабее. У некоторых линий со стерильной цитоплазмой рост растений даже несколько увеличивается. Депрессия у линий, имеющих ЦМС, частично снимается под действием генов-восстановителей. На продуктивность гибридов стерильность цитоплазмы в среднем отрицательного влияния не оказывает. В неблагоприятные по погодным условиям годы стерильные формы при опылении пыльцой фертильных растений оказываются более продуктивным.

Непосредственной причиной образования форм с ЦМС некоторые ученые считают нарушение синтеза белка в результате мутации в ядре, приводящей к неправильному микроспорогенезу, другие дегенерацию пыльцевых зерен связывают с нарушением снабжения питания пыльников стерильных растений.

При скрещивании специально подобных линий кукурузы можно получать гибриды, которые на 25-30% превышают по урожайности лучшие сорта. Такие линии высевают чередующимися рядами на участках гибридизации. Но для получения гибридных семян необходимо на растениях материнской формы до цветения вручную удалять все метелки. Эта работа требует больших затрат труда и должна проводится очень тщательно. Поэтому широкое производственное использование гибридов кукурузы длительное время сдерживалось. Открытие и использование ЦМС коренным образом решило проблему производства гибридной кукурузы. Путем возвратных насыщающих скрещиваний получили стерильные аналоги материнских линий, гибриды кукурузы перевели на стерильную основу, и их стали возделывать без затрат ручного труда на обрывание метелок.

Широкое использование гибридов у таких культур, как сорго, лук, огурцы, томат, стало возможным только благодаря открытию ЦМС, так как ручная кастрация цветков у них практически невозможна.

Кроме того, имеются данные о возможности использования ЦМС и у пшеницы. Получены стерильные формы от скрещивания двух видов растений – эгилопса и пшеницы, ведутся работы по подбору других компонентов для скрещивания, обеспечивающих максимальный гетерозис. Удалось выявить пары скрещиваний, которые дают прибавку урожая на 40–50 %.

У многих видов цветковых растений установлена цитоплазматическая мужская стерильность (ЦМС). Наиболее хорошо она изучена у кукурузы.

Мужскую стерильность впервые обнаружил К. Корренс в 1904 г. у огородного растения летний чабер. В 1921 г. В. Бэтсон обнаружил ее у льна, а в 1924 г. американский генетик Д. Джонс – у лука, в 1929 г. А.И. Купцов – у подсолнечника.

В 1932 г. М.И. Хаджинов и одновременно независимо от него американский генетик М. Родс обнаружили мужско-стерильные растения у кукурузы. В дальнейшем было установлено, что мужская стерильность широко распространена среди цветковых растений.

Мужская стерильность возникает при отсутствии пыльцы или неспособности ее к оплодотворению и проявляется в следующих трех основных формах:

1. Мужские генеративные органы – тычинки совершенно не развиваются; подобное явление наблюдается у растений некоторых видов табака.

2. Пыльники в цветках образуются, но пыльца в них не жизнеспособна; эта форма стерильности чаще всего встречается у кукурузы.

3. В пыльниках образуется нормальная пыльца, но они не растрескиваются, и пыльца не попадает на рыльца; это очень редкое явление наблюдается иногда у некоторых сортов томатов.

Мужская стерильность генетически может обуславливаться генами стерильности ядра и взаимодействием ядерных генов и плазмогенов. В соответствии с этим различают два вида мужской стерильности: ядерную (ЯМС, или ГМС) и цитоплазматическую (ЦМС). Ядерная стерильность вызывается мутациями генов хромосом. В связи с тем, что гены стерильности рецессивные, а гены фертильности доминантные, при этом типе стерильности от скрещивания стерильных форм с фертильными все растения F 1 бывают фертильными, а в F 2 происходит расщепление на фертильные и стерильные формы в отношении 3: 1; в последующих поколениях число стерильных форм непрерывно уменьшается.


РР ♀ стерильна × ♂ фертилен

F 1 фертильно

F 2 3: 1

фертильны стерильна

При опылении растений кукурузы с мужской стерильностью пыльцой нормальных растений получалось потомство со стерильной пыльцой. При повторных возвратных скрещиваниях с растениями, имеющими нормальную пыльцу, вновь возникло потомство с мужской стерильностью, даже если все 10 хромосом материнской линии замещены на хромосомы отцовской, нормальной линии.

РР ♀ стерильна × ♂ фертилен

F 1 стерильна × ♂ фертилен

F β 1 стерильна × ♂ фертилен

F β 2 стерильно и т. д.

Для объяснения причин возникновения ЦМС было выдвинуто три гипотезы. Одна из них, известная под названием вирусной, связывает возникновение мужской стерильности с вирусной инфекцией, которая может передаваться при половом размножении через цитоплазму яйцеклетки.

Вторая гипотеза рассматривает возникновение ЦМС как результат несоответствия цитоплазмы и ядра разных видов при отдаленной гибридизации.

Третья гипотеза рассматривает ЦМС как результат специфических мутаций плазмогенов. Можно утверждать, что ЦМС обусловлена наследственными изменениями (мутациями) цитоплазмы. Она обычно полностью сохраняется в F 1 и последующих поколениях, устойчиво передается по материнской линии, а наследственные факторы, ее обуславливающие, не находятся в хромосомах ядра.

В результате изучения и обобщения экспериментального материала по наследованию мужской стерильности возникло представление о том, что это свойство обусловлено взаимодействием цитоплазмы и генов хромосом, составляющих вместе генетическую систему. Цитоплазма, обусловливающая стерильность пыльцы, получила обозначение Цит S , а цитоплазма, дающая растение с фертильной пыльцой – Цит N . Существует локализованный в хромосомах доминантный ген Rf (от начальных букв restoring fertility – восстанавливающий фертильность), который, не изменяет структуры и специфичности стерильной цитоплазмы, в то же время препятствует ее проявлению (РЧС-42). Плазмогены мужской стерильности проявляют свое действие только в сочетании с рецессивными аллелями этого гена. Следовательно, только сочетание Цит S rf rf может обусловить развитие мужской стерильности. Фертильная пыльца образуется на основе нормальной цитоплазмы в сочетаниях - Цит N R f Rf , Цит N Rf rf и Цит N rf rf и на основе стерильной цитоплазмы в сочетаниях Цит S Rf Rf и Цит S Rf rf. Таким образом, наследование ЦМС по материнской линии возможно только в скрещиваниях следующих линий (рис. 42):

РР ♀ Цит S rf rf × ♂ Цит N rf rf

стерильная фертильная

гаметы: ♀ Цит S rf rf

F 1 Цит S rf rf

(стерильность закрепляется)

Линия Цит N rf rf называется закрепителем стерильности.

РР ♀ Цит S rf rf × ♂ Цит N(S) Rf Rf

стерильная фертильная

гаметы: ♀ Цит S rf Rf

F 1 Цит S Rf rf

(фертильность восстанавливается)

Линии Цит S Rf Rf и Цит N Rf Rf называются восстановителями фертильности. Скрещивание стерильных линий с растениями Цит N Rf rf и Цит S Rf rf дает половину стерильных и половину фертильных по пыльце растений. Такие растения можно назвать полувосстановителями фертильности.

Мы разобрали наиболее простой случай наследования стерильности, связанный с взаимодействием плазмогенов мужской стерильности (Цит S) и одной аллельной пары генов - rf rf . Сейчас изучены более сложные генетические системы ЦМС, связанные в проявлении стерильности пыльцы с двумя и тремя генами.


ЦМС очень широко используется при создании на стерильной основе гетерозисных гибридов кукурузы, подсолнечника и других культур.

У кукурузы большинство линий, существующих в природе, имеют генотип Цит N rf rf , то есть являются закрепителями стерильности. Однако с помощью насыщающих скрещиваний можно эти линии переделать в стерильные аналоги или в восстановители фертильности.

Получение стерильного аналога возможно следующим образом:

РР ♀ Цит S rf rf × ♂ Цит N rf rf

донор фертилен

плазмогенов (реципиент)

стерильности

гаметы: ♀ Цит S rf rf

F 1 Цит S rf rf

стерильно

В F 1 50% признаков от донора и 50% от линии реципиента. Необходимо вытеснить признаки линии-донора (кроме Цит S) и заменить их признаками линии-реципиента. Для этого проводят 5-6 возвратных скрещиваний:


РР F 1 Цит s rf rf × ♂ Цит N rf rf

стерильная фертилен (реципиент)

гаметы: ♀ Цит S rf , ♂ rf

F β 1 Цит S rf rf (75% признаков от реципиента

стерильно и 25% - от донора)

F β 6 Цит S rf rf (>99% признаков линии

стерильно реципиента и ≈1% - донора)

После шестикратного насыщения получим стерильный аналог (Цит S rf rf ) фертильной линии (Цит N rf rf ).

Стерильный аналог – это линия, сходная по всем признакам с исходной формой, но обладающая свойством цитоплазматической мужской стерильности (ЦМС).

Скрещивание, приводящее к восстановлению фертильности, записывается так:

РР ♀ Цит S Rf Rf × ♂ Цит N rf rf

фертильная фертилен

(донор (реципиент)

доминантных

ядерных генов

гаметы: ♀ Цит S Rf , ♂ rf

F 1 Цит S Rf rf

фертильно

Методом насыщающих скрещиваний и отбора по фертильности на фоне цитоплазмы с плазмогенами мужской стерильности получаем восстановительный аналог (Цит S Rf Rf ) фертильной линии Цит N rf rf . При этом в качестве донора генов, обусловливающих восстановление фертильности, берется любая фертильная линия, обладающая доминантными ядерными генами на фоне плазмогенов мужской стерильности.

РР F 1 Цит S Rf rf х ♂ Цит N rf rf

фертильная фертилен (реципиент)

Гаметы: ♀ Цит S Rf , Цит S rf , ♂ rf

F β 1 Цит S Rf rf + Цит S rf rf – браковка стерильных

фертильно стерильно форм

F β 4 ♀Цит S Rf rf + ♂Цит S rf rf

фертильная стерилен

Для перевода генов из гетерозиготного состояния в гомозиготное следует провести двухкратное самоопыление:

РР ♀ Цит S Rf rf х ♂ Цит S Rf rf

фертильная фертилен

Гаметы: ♀ Цит S Rf , Цит S rf Rf , rf

F 2 Цит S Rf Rf + 2 Цит S Rf rf + Цит S rf rf

фертильно фертильно стерильно

Линия с генотипом Цит S Rf Rf является аналогом линии Цит N rf rf . Аналог – восстановитель – это линия, по комплексу признаков сходная с данной формой, но обладающая доминантными генами – восстановителями фертильности.

Плазмогены мужской стерильности производят плейотропное действие: уменьшается число листьев, снижается устойчивость к некоторым болезням.

Задачи

1. Установив, по данным об улитках F 3 , генотипы улиток F 2 объясните, что дает нам отношение 3: 1 для выяснения генетической основы декстральной и синистральной извитости раковин у этого вида?

2. Какие данные Вы можете представить в пользу того, что чувствительность к СО 2 у дрозофилы обусловлена вирусом, а не нормальным хромосомным геном?

3. Объясните, почему раковины всех улиток F 2 имели декстральный завиток, хотя, как показал анализ особей F 3 , около ¼ всех особей F 2 были гомозиготными по синистральному завитку раковины?

4. Листья у львиного зева могут быть зелеными, белыми и пестрыми. Проведены следующие скрещивания:

♀ зеленые × ♂ белые; ♀ зеленые × ♂ пестрые;

♀ белые × ♂ зеленые; ♀ белые × ♂ пестрые;

♀ пестрые × ♂ белые; ♀ пестрые × ♂ зеленые;

Определите фенотип F 1 от каждого скрещивания.

5. Какие из генотипов линий кукурузы, генные формулы которых приведены ниже, обладают мужской стерильностью, закрепительной и восстановительной способностью?

1. Цит N rf rf

2. Цит S rf rf

3. Цит N Rf Rf

4. Цит S Rf Rf

6. У кукурузы от скрещивания линии А Б возникают гибриды со стерильными метелками. От скрещивания линии А с линией В возникают фертильные гибриды. От скрещивания линии В с линией Б получаются только фертильные растения в первом и во втором гибридных поколениях. Определите генотипы этих линий.

7. От скрещивания линии А , обладающей мужской стерильностью, с линией Б получаются гибриды первого поколения со стерильными метелками. От скрещивания линии А с линией В возникают фертильные гибриды. От скрещивания линии В с линией Б получаются фертильные гибриды, выщепляющие в F 2 растения с мужской стерильностью. Определите генотип линий А , Б , В .

8. Растение кукурузы со стерильной метелкой было опылено пыльцой фертильного растения. В F 1 возникли фертильные растения, а в F­ 2 – 78 нормальных и 26 – со стерильными метелками. Написать скрещивания с использованием генетической символики.

9. Размножьте семена линии кукурузы с цитоплазматической стерильностью. Каким генотипом при этом должны обладать отцовские растения мужской линии, чтобы в F 1 вновь были получены семена, несущие в генотипе мужскую стерильность?

10. Произведите скрещивание стерильных линий кукурузы с фертильными растениями, имеющими следующие генотипы: Цит S Rf rf , Цит N Rf rf , Цит N Rf Rf и и Цит S Rf Rf . Определите соотношение стерильных и фертильных растений в F 1 и в F 2 .

Последние материалы раздела:

Можно ли есть сыр при похудении и какие существуют ограничения?
Можно ли есть сыр при похудении и какие существуют ограничения?

Сложно найти человека, равнодушного к сыру. Многообразие сыров и их сочетаемость, полезные свойства – это, пожалуй, целая наука. И ее стоит...

Диета чтобы похудеть на 3 кг
Диета чтобы похудеть на 3 кг

Лишние килограммы могут стать крупной неприятностью для любой женщины, изменить ее мир, стать причиной депрессии и плохого настроения. Чтобы все...

Как увеличить свои доходы
Как увеличить свои доходы

На каждом предприятии должны предусматриваться плановые мероприятия по увеличению прибыли. В общем плане эти мероприятия могут быть следующего...